Biologically Realistic Mean-Field Models of Conductance-Based Networks of Spiking Neurons with Adaptation

Author:

di Volo Matteo1,Romagnoni Alberto2,Capone Cristiano3,Destexhe Alain4

Affiliation:

1. Unité de Neuroscience, Information et Complexité, CNRS FRE 3693, 91198 Gif sur Yvette, France

2. Centre de Recherche sur l'inflammation UMR 1149, Inserm-Université Paris Diderot, 75018 Paris, France, and Data Team, Departement d'informatique de l'Ecole normale supérieure, CNRS, PSL Research University, 75005 Paris, France, and European Institute for Theoretical Neuroscience, 75012 Paris, France

3. European Institute for Theoretical Neuroscience, 75012 Paris, France, and INFN Sezione di Roma, Rome 00185, Italy

4. Unité de Neuroscience, Information et Complexité, CNRS FRE 3693, 91198 Gif sur Yvette, France, and European Institute for Theoretical Neuroscience, 75012 Paris, France

Abstract

Accurate population models are needed to build very large-scale neural models, but their derivation is difficult for realistic networks of neurons, in particular when nonlinear properties are involved, such as conductance-based interactions and spike-frequency adaptation. Here, we consider such models based on networks of adaptive exponential integrate-and-fire excitatory and inhibitory neurons. Using a master equation formalism, we derive a mean-field model of such networks and compare it to the full network dynamics. The mean-field model is capable of correctly predicting the average spontaneous activity levels in asynchronous irregular regimes similar to in vivo activity. It also captures the transient temporal response of the network to complex external inputs. Finally, the mean-field model is also able to quantitatively describe regimes where high- and low-activity states alternate (up-down state dynamics), leading to slow oscillations. We conclude that such mean-field models are biologically realistic in the sense that they can capture both spontaneous and evoked activity, and they naturally appear as candidates to build very large-scale models involving multiple brain areas.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3