Delay Differential Analysis of Electroencephalographic Data

Author:

Lainscsek Claudia1,Hernandez Manuel E.2,Poizner Howard3,Sejnowski Terrence J.4

Affiliation:

1. Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A., and Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, U.S.A.

2. Institute for Neural Computation, University of California San Diego, La Jolla, CA 92903, U.S.A.

3. Institute for Neural Computation and Graduate Program in Neurosciences, University of California San Diego, La Jolla, CA 92903, U.S.A.

4. Howard Hughes Medical Institute, Computational Neurobiology Laboratory, La Jolla, CA 92037, U.S.A., and Institute for Neural Computation, University of California San Diego, La Jolla, CA 92903, U.S.A.

Abstract

We propose a time-domain approach to detect frequencies, frequency couplings, and phases using nonlinear correlation functions. For frequency analysis, this approach is a multivariate extension of discrete Fourier transform, and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short and sparse time series and can be extended to cross-trial and cross-channel spectra (CTS) for electroencephalography data where multiple short data segments from multiple trials of the same experiment are available. There are two versions of CTS. The first one assumes some phase coherency across the trials, while the second one is independent of phase coherency. We demonstrate that the phase-dependent version is more consistent with event-related spectral perturbation analysis and traditional Morlet wavelet analysis. We show that CTS can be applied to short data windows and yields higher temporal resolution than traditional Morlet wavelet analysis. Furthermore, the CTS can be used to reconstruct the event-related potential using all linear components of the CTS.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of Carleman operator from a univariate time series;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-08-01

2. An open-access EEG dataset for speech decoding: Exploring the role of articulation and coarticulation;2022-11-16

3. Frequency Analysis of EEG Signals Using Band Energy Distribution;2021 International Conference on e-Health and Bioengineering (EHB);2021-11-18

4. Assessing observability of chaotic systems using Delay Differential Analysis;Chaos: An Interdisciplinary Journal of Nonlinear Science;2020-10

5. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters;European Journal of Neuroscience;2017-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3