Confidence-Controlled Hebbian Learning Efficiently Extracts Category Membership From Stimuli Encoded in View of a Categorization Task

Author:

Berlemont Kevin1,Nadal Jean-Pierre2

Affiliation:

1. Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS, PSL University, Sorbonne Université, Université de Paris, 75005 Paris, France, and Center for Neural Science, New York University, NY 10002, U.S.A. kevin.berlemont@nyu.edu

2. Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS, PSL University, Sorbonne Université, Université de Paris, 75005 Paris, France, and Centre d'Analyse et de Mathématique Sociales, École des Hautes Études en Sciences Sociales, CNRS, 75006 Paris, France jean-pierre.nadal@phys.ens.fr

Abstract

Abstract In experiments on perceptual decision making, individuals learn a categorization task through trial-and-error protocols. We explore the capacity of a decision-making attractor network to learn a categorization task through reward-based, Hebbian-type modifications of the weights incoming from the stimulus encoding layer. For the latter, we assume a standard layer of a large number of stimulus-specific neurons. Within the general framework of Hebbian learning, we have hypothesized that the learning rate is modulated by the reward at each trial. Surprisingly, we find that when the coding layer has been optimized in view of the categorization task, such reward-modulated Hebbian learning (RMHL) fails to extract efficiently the category membership. In previous work, we showed that the attractor neural networks' nonlinear dynamics accounts for behavioral confidence in sequences of decision trials. Taking advantage of these findings, we propose that learning is controlled by confidence, as computed from the neural activity of the decision-making attractor network. Here we show that this confidence-controlled, reward-based Hebbian learning efficiently extracts categorical information from the optimized coding layer. The proposed learning rule is local and, in contrast to RMHL, does not require storing the average rewards obtained on previous trials. In addition, we find that the confidence-controlled learning rule achieves near-optimal performance. In accordance with this result, we show that the learning rule approximates a gradient descent method on a maximizing reward cost function.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3