Scaling Laws of Associative Memory Retrieval

Author:

Romani Sandro1,Pinkoviezky Itai2,Rubin Alon2,Tsodyks Misha3

Affiliation:

1. Weizmann Institute, Department of Neurobiology, Rehovot, Israel 76100; Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, U.S.A.; and Donders Centre for Neuroscience, Radboud University, 6525 Nijmegen, The Netherlands

2. Weizmann Institute, Department of Neurobiology, Rehovot, Israel 76100

3. Weizmann Institute, Department of Neurobiology, Rehovot, Israel 76100, and Center for Theoretical Neuroscience, Columbia University, New York, NY 10032, U.S.A.

Abstract

Most people have great difficulty in recalling unrelated items. For example, in free recall experiments, lists of more than a few randomly selected words cannot be accurately repeated. Here we introduce a phenomenological model of memory retrieval inspired by theories of neuronal population coding of information. The model predicts nontrivial scaling behaviors for the mean and standard deviation of the number of recalled words for lists of increasing length. Our results suggest that associative information retrieval is a dominating factor that limits the number of recalled items.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3