Mechanisms of memory storage and retrieval in hippocampal area CA3

Author:

Li YidingORCID,Briguglio John J.,Romani SandroORCID,Magee Jeffrey C.

Abstract

AbstractHippocampal area CA3 is thought to play a central role in memory formation and retrieval. Although various network mechanisms have been hypothesized to mediate these computations, direct evidence is lacking. Using intracellular membrane potential recordings from CA3 neurons and optogenetic manipulations in behaving mice we found that place field activity is produced by a symmetric form of Behavioral Timescale Synaptic Plasticity (BTSP) at recurrent synaptic connections among CA3 principal neurons but not at synapses from the dentate gyrus (DG). Additional manipulations revealed that excitatory input from the entorhinal cortex (EC) but not DG was required to update place cell activity based on the animal’s movement. These data were captured by a computational model that used BTSP and an external updating input to produce attractor dynamics under online learning conditions. Additional theoretical results demonstrate the enhanced memory storage capacity of such networks, particularly in the face of correlated input patterns. The evidence sheds light on the cellular and circuit mechanisms of learning and memory formation in the hippocampus.One Sentence SummaryEvidence from behaving mice points to cellular and circuit mechanisms that underlie observed attractor dynamics in area CA3.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3