Affiliation:
1. Guelph Natural Computation Group, Department of Computing and Information Science, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
Abstract
This article reviews connectionist network architectures and training algorithms that are capable of dealing with patterns distributed across both space and time—spatiotemporal patterns. It provides common mathematical, algorithmic, and illustrative frameworks for describing spatiotemporal networks, making it easier to compare and contrast their representational and operational characteristics. Computational power, representational issues, and learning are discussed. In additional references to the relevant source publications are provided. This article can serve as a guide to prospective users of spatiotemporal networks by providing an overview of the operational and representational alternatives available.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献