Computational Capacity of an Odorant Discriminator: The Linear Separability of Curves

Author:

Caticha N.1,Tejada J. E. Palo1,Lancet D.2,Domany E.3

Affiliation:

1. Instituto de Física, Universidade de São Paulo, CEP 05315-970, São Paulo, SP, Brazil,

2. Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot 76100, Israel,

3. Department of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel,

Abstract

We introduce and study an artificial neural network inspired by the probabilistic receptor affinity distribution model of olfaction. Our system consists of N sensory neurons whose outputs converge on a single processing linear threshold element. The system's aim is to model discrimination of a single target odorant from a large number p of background odorants within a range of odorant concentrations. We show that this is possible provided p does not exceed a critical value pc and calculate the critical capacity αc = pc/N. The critical capacity depends on the range of concentrations in which the discrimination is to be accomplished. If the olfactory bulb may be thought of as a collection of such processing elements, each responsible for the discrimination of a single odorant, our study provides a quantitative analysis of the potential computational properties of the olfactory bulb. The mathematical formulation of the problem we consider is one of determining the capacity for linear separability of continuous curves, embedded in a large-dimensional space. This is accomplished here by a numerical study, using a method that signals whether the discrimination task is realizable, together with a finite-size scaling analysis.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error-probability noise benefits in threshold neural signal detection;Neural Networks;2009-07

2. Analog VLSI Circuit Implementation of an Adaptive Neuromorphic Olfaction Chip;IEEE Transactions on Circuits and Systems I: Regular Papers;2007-01

3. Organization of a primitive memory: Olfaction;Proceedings of the National Academy of Sciences;2004-10-25

4. Signal Processing With Temporal Sequences in Olfactory Systems;IEEE Transactions on Neural Networks;2004-09

5. Learning Classification in the Olfactory System of Insects;Neural Computation;2004-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3