Universal Approximation Capability of Cascade Correlation for Structures

Author:

Hammer Barbara1,Micheli Alessio2,Sperduti Alessandro3

Affiliation:

1. Institute of Computer Science, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany

2. Dipartimento di Informatica, Universitàdi Pisa, Pisa, Italy

3. Dipartimento di Matematica Pura ed Applicata, Universitàdi Padova, Padova, Italy

Abstract

Cascade correlation (CC) constitutes a training method for neural networks that determines the weights as well as the neural architecture during training. Various extensions of CC to structured data have been proposed: recurrent cascade correlation (RCC) for sequences, recursive cascade correlation (RecCC) for tree structures with limited fan-out, and contextual recursive cascade correlation (CRecCC) for rooted directed positional acyclic graphs (DPAGs) with limited fan-in and fan-out. We show that these models possess the universal approximation property in the following sense: given a probability measure P on the input set, every measurable function from sequences into a real vector space can be approximated by a sigmoidal RCC up to any desired degree of accuracy up to inputs of arbitrary small probability. Every measurable function from tree structures with limited fan-out into a real vector space can be approximated by a sigmoidal RecCC with multiplicative neurons up to any desired degree of accuracy up to inputs of arbitrary small probability. For sigmoidal CRecCC networks with multiplicative neurons, we show the universal approximation capability for functions on an important subset of all DPAGs with limited fan-in and fan-out for which a specific linear representation yields unique codes. We give one sufficient structural condition for the latter property, which can easily be tested: the enumeration of ingoing and outgoing edges should becom patible. This property can be fulfilled for every DPAG with fan-in and fan-out two via reenumeration of children and parents, and for larger fan-in and fan-out via an expansion of the fan-in and fan-out and reenumeration of children and parents. In addition, the result can be generalized to the case of input-output isomorphic transductions of structures. Thus, CRecCC networks consti-tute the first neural models for which the universal approximation ca-pability of functions involving fairly general acyclic graph structures is proved.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3