A Neural Probabilistic Graphical Model for Learning and Decision Making in Evolving Structured Environments

Author:

Trentin EdmondoORCID

Abstract

A difficult and open problem in artificial intelligence is the development of agents that can operate in complex environments which change over time. The present communication introduces the formal notions, the architecture, and the training algorithm of a machine capable of learning and decision-making in evolving structured environments. These environments are defined as sets of evolving relations among evolving entities. The proposed machine relies on a probabilistic graphical model whose time-dependent latent variables undergo a Markov assumption. The likelihood of such variables given the structured environment is estimated via a probabilistic variant of the recursive neural network.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Challenge problems for artificial intelligence;Selman;Proceedings of the Thirteenth National Conference on Artificial Intelligence AAAI’96,1996

2. Computational Neurogenetic Modeling;Benuskova,2007

3. Evolving Intelligent Systems: Methodology and Applications;Angelov,2010

4. One After Another: Learning Incremental Skills for a Changing World;Shafiullah;arXiv,2022

5. Fault Diagnosis of Hybrid Dynamic and Complex Systems;Sayed Mouchaweh,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3