Computer-Automated Evolution of an X-Band Antenna for NASA's Space Technology 5 Mission

Author:

Hornby Gregory. S.1,Lohn Jason D.2,Linden Derek S.3

Affiliation:

1. University Affiliated Research Center, NASA Ames Research Park, UC Santa Cruz at Moffett Field, California, 94035.

2. Carnegie Mellon University, NASA Ames Research Park and Moffett Field, California 94035.

3. X5 Systems, Inc., Ashburn, Virginia 20147.

Abstract

Whereas the current practice of designing antennas by hand is severely limited because it is both time and labor intensive and requires a significant amount of domain knowledge, evolutionary algorithms can be used to search the design space and automatically find novel antenna designs that are more effective than would otherwise be developed. Here we present our work in using evolutionary algorithms to automatically design an X-band antenna for NASA's Space Technology 5 (ST5) spacecraft. Two evolutionary algorithms were used: the first uses a vector of real-valued parameters and the second uses a tree-structured generative representation for constructing the antenna. The highest-performance antennas from both algorithms were fabricated and tested and both outperformed a hand-designed antenna produced by the antenna contractor for the mission. Subsequent changes to the spacecraft orbit resulted in a change in requirements for the spacecraft antenna. By adjusting our fitness function we were able to rapidly evolve a new set of antennas for this mission in less than a month. One of these new antenna designs was built, tested, and approved for deployment on the three ST5 spacecraft, which were successfully launched into space on March 22, 2006. This evolved antenna design is the first computer-evolved antenna to be deployed for any application and is the first computer-evolved hardware in space.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Popular Evolutionary Computation Algorithms;Intelligent Optimization;2024

2. Real-World Applications;Intelligent Optimization;2024

3. Bottom-up generative up-cycling: a part based design study with genetic algorithms;Results in Engineering;2023-06

4. Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences;Theoretical Computer Science;2023-01

5. Language models for the prediction of SARS-CoV-2 inhibitors;The International Journal of High Performance Computing Applications;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3