Evolutionary Body Building: Adaptive Physical Designs for Robots

Author:

Funes Pablo1,Pollack Jordan1

Affiliation:

1. Computer Science Department Volen Center for Complex Systems Brandeis University Waltham, MA 02454-9110

Abstract

Creating artificial life forms through evolutionary robotics faces a “chicken and egg” problem: Learning to control a complex body is dominated by problems specific to its sensors and effectors, while building a body that is controllable assumes the pre-existence of a brain. The idea of coevolution of bodies and brains is becoming popular, but little work has been done in evolution of physical structure because of the lack of a general framework for doing it. Evolution of creatures in simulation has usually resulted in virtual entities that are not buildable, while embodied evolution in actual robotics is constrained by the slow pace of real time. The work we present takes a step in addressing the problem of body evolution by applying evolutionary techniques to the design of structures assembled out of elementary components that stick together. Evolution takes place in a simulator that computes forces and stresses and predicts stability of three-dimensional brick structures. The final printout of our program is a schematic assembly, which is then built physically. We demonstrate the functionality of this approach to robot body building with many evolved artifacts.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Optimization of Robot Design for Navigating in Ceiling Systems;Computing in Civil Engineering 2023;2024-01-25

2. Deformable Morphing and Multivariable Stiffness in the Evolutionary Robotics;International Journal of Automotive Manufacturing and Materials;2023-10-24

3. Robot morphology evolution for automated HVAC system inspections using graph heuristic search and reinforcement learning;Automation in Construction;2023-09

4. Towards the Neuroevolution of Low-level artificial general intelligence;Frontiers in Robotics and AI;2022-10-14

5. Experimental Form-finding: A review;IOP Conference Series: Materials Science and Engineering;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3