The Role of Familiar Size in the Control of Grasping

Author:

Marotta J. J.1,Goodale M. A.212

Affiliation:

1. Carnegie Mellon University

2. The University of Western Ontario

Abstract

Abstract The present study examined whether the learned pictorial depth cue of “familiar size” could be used to plan a reaching and grasping movement in the absence of binocular vision. Sixteen right-handed subjects were presented with two different arrays, under monocular and binocular viewing conditions, in which a range of different “grasp-sized” spheres that were lit from within could be presented in an otherwise darkened environment. In the “familiar-size” presentation array, only one “standard” sized sphere was presented, which gave subjects an opportunity to learn the relationship between the standard sphere's retinal image size and its distance. In the “multiple” spheres presentation array, subjects could not learn such a relationship because on any one trial, one of four different sphere sizes could be present. In a second experiment, the effects of this paradigm on six subjects' perceptual reports of distance were examined by having subjects slide their index fingers apart along a horizontal rod to indicate the estimated distance of the spheres. When familiar size could not be used as a cue to distance, subjects produced more on-line corrections in their reaching and grasping movements to the standard-sized spheres—but only under monocular viewing conditions. It appears that subjects are able to exploit the learned relationship between an object's distance and its projected retinal image size to help program and control reaching and grasping movements when binocular vision is not available. Although the influence of familiar size on subjects' perceptual estimates is less clear, it is clear that subjects' perceptual estimates show poor absolute scaling for distance. This result further supports the notion that under normal viewing conditions the visuomotor system uses binocular information to program and control manual prehension, but is able to use pictorial information when binocular vision is denied.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Reference28 articles.

1. Blindsight in rodents: The use of a ‘high-level’ distance cue in gerbils with lesions of primary visual cortex

2. Collett, T. S. & Harkness, L. I. K. (1982). Depth vision in animals. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 111-176). Cambridge: MIT Press.

3. The perception and prehension of objects oriented in the depth plane

4. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

5. Convergence as a Cue to Absolute Distance

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Internal representations of the canonical real-world distance of objects;Journal of Vision;2024-02-27

2. Visual Streams as Core Mechanisms;The British Journal for the Philosophy of Science;2023-11-06

3. Pictorial depth cues always influence reaching distance;Neuropsychologia;2023-11

4. Familiar size affects perception differently in virtual reality and the real world;Philosophical Transactions of the Royal Society B: Biological Sciences;2022-12-13

5. Binocular Viewing Facilitates Size Constancy for Grasping and Manual Estimation;Vision;2022-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3