Rapid Composition for Networked Devices: HappyBrackets

Author:

Fraietta Angelo1,Bown Oliver2,Ferguson Sam3,Gillespie Sam4,Bray Liam5

Affiliation:

1. University of New South Wales Faculty of Art and Design PO Box 859 Hamilton NSW 2292, Australia angelo@smartcontroller.com.au

2. University of New South Wales Faculty of Art and Design Corner of Greens Road and Oxford Street Paddington, New South Wales 2021, Australia o.bown@unsw.edu.au

3. Faculty of Engineering and Information Technology University of Technology Sydney PO Box 123, Ultimo, New South Wales 2207, Australia samuel.ferguson@uts.edu.au

4. 1/1a Monomeeth Street, Bexley, New South Wales 2007, Australia sam@samgillespie.com

5. The University of Sydney School of Architecture, Design and Planning Wilkinson Building (G04) 148 City Road, Darlington NSW 2008, Australia liam.bray@sydney.edu.au

Abstract

Abstract This article introduces an open-source Java-based programming environment for creative coding of agglomerative systems using Internet-of-Things (IoT) technologies. Our software originally focused on digital signal processing of audio—including synthesis, sampling, granular sample playback, and a suite of basic effects—but composers now use it to interface with sensors and peripherals through general-purpose input/output and external networked systems. This article examines and addresses the strategies required to integrate novel embedded musical interfaces and creative coding paradigms through an IoT infrastructure. These include: the use of advanced tooling features of a professional integrated development environment as a composition or performance interface rather than just as a compiler; techniques to create media works using features such as autodetection of sensors; seamless and serverless communication among devices on the network; and uploading, updating, and running of new compositions to the device without interruption. Furthermore, we examined the difficulties many novice programmers experience when learning to write code, and we developed strategies to address these difficulties without restricting the potential available in the coding environment. We also examined and developed methods to monitor and debug devices over the network, allowing artists and programmers to set and retrieve current variable values to or from these devices during the performance and composition stages. Finally, we describe three types of art work that demonstrate how the software, called HappyBrackets, is being used in live-coding and dance performances, in interactive sound installations, and as an advanced composition and performance tool for multimedia works.

Publisher

MIT Press - Journals

Subject

Computer Science Applications,Music,Media Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3