Affiliation:
1. University of Science and Technology Beijing, Beijing 100083, China
2. Engineering Research Center of Intelligent Supercomputing, Beijing, 100083
Abstract
ABSTRACT
Parameter calibration is an important part of hydrological simulation and affects the final simulation results. In this paper, we introduce heuristic optimization algorithms, genetic algorithm (GA) to cope with the complexity of the parameter calibration problem, and use particle swarm optimization algorithm (PSO) as a comparison. For large-scale hydrological simulations, we use a multilevel parallel parameter calibration framework to make full use of processor resources, and accelerate the process of solving high-dimensional parameter calibration. Further, we test and apply the experiments on domestic supercomputers. The results of parameter calibration with GA and PSO can basically reach the ideal value of 0.65 and above, with PSO achieving a speedup of 58.52 on TianHe-2 supercomputer. The experimental results indicate that using a parallel implementation on multicore CPUs makes high-dimensional parameter calibration in large-scale hydrological simulation possible. Moreover, our comparison of the two algorithms shows that the GA obtains better calibration results, and the PSO has a more pronounced acceleration effect.
Subject
Artificial Intelligence,Library and Information Sciences,Computer Science Applications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献