The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting

Author:

Hauswirth Sandra M.ORCID,Bierkens Marc F. P.ORCID,Beijk Vincent,Wanders NikoORCID

Abstract

Abstract. Hydrological forecasts are important for operational water management and near-future planning, even more so in light of the increased occurrences of extreme events such as floods and droughts. Having a forecasting framework, which is flexible in terms of input forcings and forecasting locations (local, regional, or national) that can deliver this information in fast and computational efficient manner, is critical. In this study, the suitability of a hybrid forecasting framework, combining data-driven approaches and seasonal (re)forecasting information from dynamical models, to predict hydrological variables was explored. Target variables include discharge and surface water levels for various stations at a national scale, with the Netherlands as the focus. Five different machine learning (ML) models, ranging from simple to more complex and trained on historical observations of discharge, precipitation, evaporation, and seawater levels, were run with seasonal (re)forecast data, including the European Flood Awareness System (EFAS) and ECMWF seasonal forecast system (SEAS5), of these driver variables in a hindcast setting. The results were evaluated using the evaluation metrics, i.e. anomaly correlation coefficient (ACC), continuous ranked probability (skill) score (CRPS and CRPSS), and Brier skill score (BSS), in comparison to a climatological reference hindcast. Aggregating the results of all stations and ML models revealed that the hindcasting framework outperformed the climatological reference forecasts by roughly 60 % for discharge predictions (80 % for surface water level predictions). Skilful prediction for the first lead month, independently of the initialization month, can be made for discharge. The skill extends up to 2–3 months for spring months due to snowmelt dynamic captured in the training phase of the model. Surface water level hindcasts showed similar skill and skilful lead times. While the different ML models showed differences in performance during a testing and training phase using historical observations, running the ML framework in a hindcast setting showed only minor differences between the models, which is attributed to the uncertainty in seasonal forecasts. However, despite being trained on historical observations, the hybrid framework used in this study shows similar skilful predictions to previous large-scale forecasting systems. With our study, we show that a hybrid framework is able to bring location-specific skilful seasonal forecast information with global seasonal forecast inputs. At the same time, our hybrid approach is flexible and fast, and as such, a hybrid framework could be adapted to make it even more interesting to water managers and their needs, for instance, as part of a fast model-predictive control framework.

Funder

Rijkswaterstaat

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3