Argumentation Mining in User-Generated Web Discourse

Author:

Habernal Ivan1,Gurevych Iryna2

Affiliation:

1. German Institute for Educational Research and Technische Universität Darmstadt

2. Technische Universität Darmstadt and German Institute for Educational Research

Abstract

The goal of argumentation mining, an evolving research field in computational linguistics, is to design methods capable of analyzing people's argumentation. In this article, we go beyond the state of the art in several ways. (i) We deal with actual Web data and take up the challenges given by the variety of registers, multiple domains, and unrestricted noisy user-generated Web discourse. (ii) We bridge the gap between normative argumentation theories and argumentation phenomena encountered in actual data by adapting an argumentation model tested in an extensive annotation study. (iii) We create a new gold standard corpus (90k tokens in 340 documents) and experiment with several machine learning methods to identify argument components. We offer the data, source codes, and annotation guidelines to the community under free licenses. Our findings show that argumentation mining in user-generated Web discourse is a feasible but challenging task.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference158 articles.

1. A Benchmark Dataset for Automatic Detection of Claims and Evidence in the Context of Controversial Topics

2. Ammari, Tawfiq, Meredith Ringel Morris, and Sarita Yardi Schoenebeck. 2014. Accessing social support and overcoming judgment on social media among parents of children with special needs. In International AAAI Conference on Weblogs and Social Media, pages 22–31, Ann Arbor, MI.

3. The New Rhetoric’s Inheritance. Argumentation and Discourse Analysis

4. Challenges and Remedies for Identifying and Classifying Argumentation Schemes

5. Inter-Coder Agreement for Computational Linguistics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3