Representing Meaning with a Combination of Logical and Distributional Models

Author:

Beltagy I.1,Roller Stephen1,Cheng Pengxiang1,Erk Katrin1,Mooney Raymond J.1

Affiliation:

1. The University of Texas at Austin

Abstract

NLP tasks differ in the semantic information they require, and at this time no single semantic representation fulfills all requirements. Logic-based representations characterize sentence structure, but do not capture the graded aspect of meaning. Distributional models give graded similarity ratings for words and phrases, but do not capture sentence structure in the same detail as logic-based approaches. It has therefore been argued that the two are complementary. We adopt a hybrid approach that combines logical and distributional semantics using probabilistic logic, specifically Markov Logic Networks. In this article, we focus on the three components of a practical system: 1 1) Logical representation focuses on representing the input problems in probabilistic logic; 2) knowledge base construction creates weighted inference rules by integrating distributional information with other sources; and 3) probabilistic inference involves solving the resulting MLN inference problems efficiently. To evaluate our approach, we use the task of textual entailment, which can utilize the strengths of both logic-based and distributional representations. In particular we focus on the SICK data set, where we achieve state-of-the-art results. We also release a lexical entailment data set of 10,213 rules extracted from the SICK data set, which is a valuable resource for evaluating lexical entailment systems. 2

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Reference79 articles.

1. Integrating experiential and distributional data to learn semantic representations.

2. Bach, Stephen H., Bert Huang, Ben London, and Lise Getoor. 2013. Hinge-loss Markov random fields: Convex inference for structured prediction. In UAI 2013, pages 32–41, Bellevue, WA.

3. Baroni, Marco, Raffaella Bernardi, Ngoc-Quynh Do, and Chung-chieh Shan. 2012. Entailment above the word level in distributional semantics. In EACL 2012, pages 23–32, Avignon.

4. Baroni, Marco, Raffaella Bernardi, and Roberto Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in Language Technology, 9(6):5–110.

5. Distributional Memory: A General Framework for Corpus-Based Semantics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3