Watset: Local-Global Graph Clustering with Applications in Sense and Frame Induction

Author:

Ustalov Dmitry1,Panchenko Alexander2,Biemann Chris3,Ponzetto Simone Paolo4

Affiliation:

1. Data & Web Science Group, University of Mannheim.

2. Language Technology Group, Skolkovo Institute of Science and Technology.

3. Language Technology Group, University of Hamburg.

4. Data & Web Science Group, University of Mannheim

Abstract

We present a detailed theoretical and computational analysis of the Watset meta-algorithm for fuzzy graph clustering, which has been found to be widely applicable in a variety of domains. This algorithm creates an intermediate representation of the input graph, which reflects the “ambiguity” of its nodes. Then, it uses hard clustering to discover clusters in this “disambiguated” intermediate graph. After outlining the approach and analyzing its computational complexity, we demonstrate that Watset shows competitive results in three applications: unsupervised synset induction from a synonymy graph, unsupervised semantic frame induction from dependency triples, and unsupervised semantic class induction from a distributional thesaurus. Our algorithm is generic and can also be applied to other networks of linguistic data.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing breast cancer comorbidities: a network approach using community detection algorithms;Applied Network Science;2024-07-08

2. Graph-based event schema induction in open-domain corpus;PeerJ Computer Science;2024-06-28

3. Community Detection via Autoencoder-Like Nonnegative Tensor Decomposition;IEEE Transactions on Neural Networks and Learning Systems;2022

4. Context-Based Text-Graph Embeddings in Word-Sense Induction Tasks;Communications in Computer and Information Science;2022

5. Maschinelles Lernen für Sprachverarbeitung;Wissensrohstoff Text;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3