Stochastic Language Generation in Dialogue using Factored Language Models

Author:

Mairesse François1,Young Steve1

Affiliation:

1. University of Cambridge

Abstract

Most previous work on trainable language generation has focused on two paradigms: (a) using a generation decisions of an existing generator. Both approaches rely on the existence of a handcrafted generation component, which is likely to limit their scalability to new domains. The first contribution of this article is to present Bagel, a fully data-driven generation method that treats the language generation task as a search for the most likely sequence of semantic concepts and realization phrases, according to Factored Language Models (FLMs). As domain utterances are not readily available for most natural language generation tasks, a large creative effort is required to produce the data necessary to represent human linguistic variation for nontrivial domains. This article is based on the assumption that learning to produce paraphrases can be facilitated by collecting data from a large sample of untrained annotators using crowdsourcing—rather than a few domain experts—by relying on a coarse meaning representation. A second contribution of this article is to use crowdsourced data to show how dialogue naturalness can be improved by learning to vary the output utterances generated for a given semantic input. Two data-driven methods for generating paraphrases in dialogue are presented: (a) by sampling from the n-best list of realizations produced by Bagel's FLM reranker; and (b) by learning a structured perceptron predicting whether candidate realizations are valid paraphrases. We train Bagel on a set of 1,956 utterances produced by 137 annotators, which covers 10 types of dialogue acts and 128 semantic concepts in a tourist information system for Cambridge. An automated evaluation shows that Bagel outperforms utterance class LM baselines on this domain. A human evaluation of 600 resynthesized dialogue extracts shows that Bagel's FLM output produces utterances comparable to a handcrafted baseline, whereas the perceptron classifier performs worse. Interestingly, human judges find the system sampling from the n-best list to be more natural than a system always returning the first-best utterance. The judges are also more willing to interact with the n-best system in the future. These results suggest that capturing the large variation found in human language using data-driven methods is beneficial for dialogue interaction.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HanaNLG: A Flexible Hybrid Approach for Natural Language Generation;Computational Linguistics and Intelligent Text Processing;2023

2. Turkish Data-to-Text Generation Using Sequence-to-Sequence Neural Networks;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-12-27

3. A rich task-oriented dialogue corpus in Vietnamese;Language Resources and Evaluation;2022-09-27

4. Decoding Methods in Neural Language Generation: A Survey;Information;2021-08-30

5. Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots;Synthesis Lectures on Human Language Technologies;2020-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3