Decoding Methods in Neural Language Generation: A Survey

Author:

Zarrieß SinaORCID,Voigt Henrik,Schüz Simeon

Abstract

Neural encoder-decoder models for language generation can be trained to predict words directly from linguistic or non-linguistic inputs. When generating with these so-called end-to-end models, however, the NLG system needs an additional decoding procedure that determines the output sequence, given the infinite search space over potential sequences that could be generated with the given vocabulary. This survey paper provides an overview of the different ways of implementing decoding on top of neural network-based generation models. Research into decoding has become a real trend in the area of neural language generation, and numerous recent papers have shown that the choice of decoding method has a considerable impact on the quality and various linguistic properties of the generation output of a neural NLG system. This survey aims to contribute to a more systematic understanding of decoding methods across different areas of neural NLG. We group the reviewed methods with respect to the broad type of objective that they optimize in the generation of the sequence—likelihood, diversity, and task-specific linguistic constraints or goals—and discuss their respective strengths and weaknesses.

Funder

Carl-Zeiss-Stiftung

Publisher

MDPI AG

Subject

Information Systems

Reference186 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving text classification through pre-attention mechanism-derived lexicons;Applied Intelligence;2024-09-02

2. Data-to-Text;Natural Language Interfaces to Databases;2023-11-25

3. Transformer based Answer-Aware Bengali Question Generation;International Journal of Cognitive Computing in Engineering;2023-06

4. Design of Cigarette QR Code Decoding System Based on STM32;Security and Communication Networks;2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3