Affiliation:
1. University of New South Wales
Abstract
Mechanisms of motor-sensory prediction are dependent on expectations regarding when self-generated feedback will occur. Existing behavioral and electrophysiological research suggests that we have a default expectation for immediate sensory feedback after executing an action. However, studies investigating the adaptability of this temporal expectation have been limited in their ability to differentiate modified expectations per se from effects of stimulus repetition. Here, we use a novel, within-participant procedure that allowed us to disentangle the effect of repetition from expectation and allowed us to determine whether the default assumption for immediate feedback is fixed and resistant to modification or is amenable to change with experience. While EEG was recorded, 45 participants completed a task in which they repeatedly pressed a button to produce a tone that occurred immediately after the button press (immediate training) or after a 100-msec delay (delayed training). The results revealed significant differences in the patterns of cortical change across the two training conditions. Specifically, there was a significant reduction in the cortical response to tones across delayed training blocks but no significant change across immediate training blocks. Furthermore, experience with delayed training did not result in increased cortical activity in response to immediate feedback. These findings suggest that experience with action–sensation delays broadens the window of temporal expectations, allowing for the simultaneous anticipation of both delayed and immediate motor-sensory feedback. This research provides insights into the mechanisms underlying motor-sensory prediction and may represent a novel therapeutic avenue for psychotic symptoms, which are ostensibly associated with sensory prediction abnormalities.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献