The Role of Action–Effect Contingency on Sensory Attenuation in the Absence of Movement

Author:

Han Nathan1ORCID,Jack Bradley N.2,Hughes Gethin3,Whitford Thomas J.1

Affiliation:

1. UNSW Sydney

2. Australian National University, Canberra, Australia

3. University of Essex, Colchester, United Kingdom

Abstract

Abstract Stimuli that have been generated by a person's own willed motor actions generally elicit a suppressed electrophysiological, as well as phenomenological, response compared with identical stimuli that have been externally generated. This well-studied phenomenon, known as sensory attenuation, has mostly been studied by comparing ERPs evoked by self-initiated and externally generated sounds. However, most studies have assumed a uniform action–effect contingency, in which a motor action leads to a resulting sensation 100% of the time. In this study, we investigated the effect of manipulating the probability of action–effect contingencies on the sensory attenuation effect. In Experiment 1, participants watched a moving, marked tickertape while EEG was recorded. In the full-contingency (FC) condition, participants chose whether to press a button by a certain mark on the tickertape. If a button press had not occurred by the mark, a sound would be played a second later 100% of the time. If the button was pressed before the mark, the sound was not played. In the no-contingency (NC) condition, participants observed the same tickertape; in contrast, however, if participants did not press the button by the mark, a sound would occur only 50% of the time (NC-inaction). Furthermore, in the NC condition, if a participant pressed the button before the mark, a sound would also play 50% of the time (NC-action). In Experiment 2, the design was identical, except that a willed action (as opposed to a willed inaction) triggered the sound in the FC condition. The results were consistent across the two experiments: Although there were no differences in N1 amplitude between conditions, the amplitude of the Tb and P2 components were smaller in the FC condition compared with the NC-inaction condition, and the amplitude of the P2 component was also smaller in the FC condition compared with the NC-action condition. The results suggest that the effect of contingency on electrophysiological indices of sensory attenuation may be indexed primarily by the Tb and P2 components, rather than the N1 component which is most commonly studied.

Funder

Ideas grant from the National Health and Medical Research Council (NHMRC) of Australia

Discovery Projects from the Australian Research Council

Australian Government Research Training Program Scholarship

ARC DECRA

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3