A Silent Disco: Differential Effects of Beat-based and Pattern-based Temporal Expectations on Persistent Entrainment of Low-frequency Neural Oscillations

Author:

Bouwer Fleur L.12ORCID,Fahrenfort Johannes J.12,Millard Samantha K.234,Kloosterman Niels A.56,Slagter Heleen A.12

Affiliation:

1. Vrije Universiteit Amsterdam, The Netherlands

2. University of Amsterdam, The Netherlands

3. Neuroscience Research Australia, Sydney, New South Wales, Australia

4. University of New South Wales, Sydney, New South Wales, Australia

5. Max Planck UCL, Berlin, Germany

6. Max Planck Institute for Human Development, Berlin, Germany

Abstract

Abstract The brain uses temporal structure in the environment, like rhythm in music and speech, to predict the timing of events, thereby optimizing their processing and perception. Temporal expectations can be grounded in different aspects of the input structure, such as a regular beat or a predictable pattern. One influential account posits that a generic mechanism underlies beat-based and pattern-based expectations, namely, entrainment of low-frequency neural oscillations to rhythmic input, whereas other accounts assume different underlying neural mechanisms. Here, we addressed this outstanding issue by examining EEG activity and behavioral responses during silent periods following rhythmic auditory sequences. We measured responses outlasting the rhythms both to avoid confounding the EEG analyses with evoked responses, and to directly test whether beat-based and pattern-based expectations persist beyond stimulation, as predicted by entrainment theories. To properly disentangle beat-based and pattern-based expectations, which often occur simultaneously, we used non-isochronous rhythms with a beat, a predictable pattern, or random timing. In Experiment 1 (n = 32), beat-based expectations affected behavioral ratings of probe events for two beat-cycles after the end of the rhythm. The effects of pattern-based expectations reflected expectations for one interval. In Experiment 2 (n = 27), using EEG, we found enhanced spectral power at the beat frequency for beat-based sequences both during listening and silence. For pattern-based sequences, enhanced power at a pattern-specific frequency was present during listening, but not silence. Moreover, we found a difference in the evoked signal following pattern-based and beat-based sequences. Finally, we show how multivariate pattern decoding and multiscale entropy—measures sensitive to non-oscillatory components of the signal—can be used to probe temporal expectations. Together, our results suggest that the input structure used to form temporal expectations may affect the associated neural mechanisms. We suggest climbing activity and low-frequency oscillations may be differentially associated with pattern-based and beat-based expectations.

Funder

Amsterdam Brain and Cognition

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

MIT Press

Subject

Cognitive Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3