Strength of low-frequency EEG phase entrainment to external stimuli is associated with fluctuations in the brain’s internal state

Author:

Mäki-Marttunen Verónica,Velinov Alexandra,Nieuwenhuis Sander

Abstract

AbstractThe brain attends to environmental rhythms by aligning the phase of internal oscillations. However, the factors underlying fluctuations in the strength of this phase entrainment remain largely unknown. In the present study we examined whether the strength of low-frequency EEG phase entrainment to rhythmic stimulus sequences varied with pupil size and posterior alpha-band power, thought to reflect arousal level and excitability of posterior cortical brain areas, respectively. We recorded pupil size and scalp EEG while participants carried out an intermodal selective attention task, in which they were instructed to attend to a rhythmic sequence of visual or auditory stimuli and ignore the other perceptual modality. As expected, intertrial phase coherence (ITC), a measure of entrainment strength, was larger for the task-relevant than for the task-irrelevant modality. Across the experiment, pupil size and posterior alpha power were strongly linked with each other, and ITC tracked pupil size: with increasing pupil size, entrainment was higher to the task-relevant stimulus sequence and lower to the task-irrelevant stimulus sequence. Exploratory analyses showed that a temporal relation between ITC and posterior alpha power emerged in the time periods around pupil peaks and pupil troughs. These results indicate that endogenous sources contribute distinctly to the fluctuations of EEG phase entrainment.Significance statementFluctuations in cortical state powerfully shape the perception of external stimuli. Understanding the physiological signatures of cortical state fluctuations is crucial to understand how the brain selectively attends and switches between internal and external content. Here we studied how two signatures of attentional state, pupil-linked arousal and power in the alpha band, shape the entrainment of brain activity to low-frequency rhythmic stimuli. Our results disclose common and dissociable influences of these signatures at slow time scales. Furthermore, measuring and including pupil size as a covariate in statistical models can help increase statistical power in studies focusing on EEG phase entrainment. Our study provides new evidence on a direct influence of cortical state on the perception of rhythmic stimuli.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3