Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction

Author:

Caramazza Alfonso1,Shelton Jennifer R.1

Affiliation:

1. Harvard University

Abstract

We claim that the animate and inanimate conceptual categories represent evolutionarily adapted domain-specific knowledge systems that are subserved by distinct neural mechanisms, thereby allowing for their selective impairment in conditions of brain damage. On this view, (some of) the category-specific deficits that have recently been reported in the cognitive neuropsychological literature—for example, the selective damage or sparing of knowledge about animals—are truly categorical effects. Here, we articulate and defend this thesis against the dominant, reductionist theory of category-specific deficits, which holds that the categorical nature of the deficits is the result of selective damage to noncategorically organized visual or functional semantic subsystems. On the latter view, the sensory/functional dimension provides the fundamental organizing principle of the semantic system. Since, according to the latter theory, sensory and functional properties are differentially important in determining the meaning of the members of different semantic categories, selective damage to the visual or the functional semantic subsystem will result in a category-like deficit. A review of the literature and the results of a new case of category-specific deficit will show that the domain-specific knowledge framework provides a better account of category-specific deficits than the sensory/functional dichotomy theory.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 1040 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed representations of behaviour-derived object dimensions in the human visual system;Nature Human Behaviour;2024-09-09

2. What we mean when we say semantic: Toward a multidisciplinary semantic glossary;Psychonomic Bulletin & Review;2024-09-04

3. The Argument from Prepared Learning;The Building Blocks of Thought;2024-08-22

4. The Evolution of Fodor’s Case against Concept Learning;The Building Blocks of Thought;2024-08-22

5. Conclusion to Part III;The Building Blocks of Thought;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3