The Utility of Evolving Simulated Robot Morphology Increases with Task Complexity for Object Manipulation

Author:

Bongard Josh1

Affiliation:

1. University of Vermont

Abstract

Embodied artificial intelligence argues that the body and brain play equally important roles in the generation of adaptive behavior. An increasingly common approach therefore is to evolve an agent's morphology along with its control in the hope that evolution will find a good coupled system. In order for embodied artificial intelligence to gain credibility within the robotics and cognitive science communities, however, it is necessary to amass evidence not only for how to co-optimize morphology and control of adaptive machines, but why. This work provides two new lines of evidence for why this co-optimization is useful: Here we show that for an object manipulation task in which a simulated robot must accomplish one, two, or three objectives simultaneously, subjugating more aspects of the robot's morphology to selective pressure allows for the evolution of better robots as the number of objectives increases. In addition, for robots that successfully evolved to accomplish all of their objectives, those composed of evolved rather than fixed morphologies generalized better to previously unseen environmental conditions.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Early Stopping in Evolutionary Direct Policy Search;ACM Transactions on Evolutionary Learning and Optimization;2024-07-29

2. Reinforcement learning for freeform robot design;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Guiding the Exploration of the Solution Space in Walking Robots Through Growth-Based Morphological Development;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

4. Engineering morphological development in a robotic bipedal walking problem: An empirical study;Neurocomputing;2023-03

5. Meta-brain Models: biologically-inspired cognitive agents;IOP Conference Series: Materials Science and Engineering;2022-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3