Affiliation:
1. Department of Electrical Engineering and Computer Science, and Department of Biology Case Western Reserve University
Abstract
Notions of embodiment, situatedness, and dynamics are increasingly being debated in cognitive sci ence. However, these debates are often carried out in the absence of concrete examples. In order to build intuition, this paper explores a model agent to illustrate how the perspective and tools of dynam ical systems theory can be applied to the analysis of situated, embodied agents capable of minimally cognitive behavior. Specifically, we study a model agent whose “nervous system” was evolved using a genetic algorithm to catch circular objects and to avoid diamond-shaped ones. After characterizing the performance, behavioral strategy and psychophysics of the best-evolved agent, its dynamics are analyzed in some detail at three different levels: (1) the entire coupled brain/body/environment sys tem; (2) the interaction between agent and environment that generates the observed coupled dynam ics; (3) the underlying neuronal properties responsible for the agent dynamics. This analysis offers both explanatory insight and testable predictions. The paper concludes with discussions of the overall picture that emerges from this analysis, the challenges this picture poses to traditional notions of rep resentation, and the utility of a research methodology involving the analysis of simpler idealized mod els of complete brain/body/environment systems.
Subject
Behavioral Neuroscience,Experimental and Cognitive Psychology
Cited by
322 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献