Evolving Connectionist Models to Capture Population Variability across Language Development: Modeling Children's Past Tense Formation

Author:

Kohli Maitrei1,Magoulas George D.2,Thomas Michael S. C.3

Affiliation:

1. University of London, Birkbeck College, Department of Computer Science & Information Systems.

2. University of London, Birkbeck College, Department of Computer Science & Information Systems, Knowledge Lab.

3. University of Londo,n Birkbeck College, Department of Psychological Sciences.

Abstract

Children's acquisition of the English past tense has been widely studied as a testing ground for theories of language development, mostly because it comprises a set of quasi-regular mappings. English verbs are of two types: regular verbs, which form their past tense based on a productive rule, and irregular verbs, which form their past tenses through exceptions to that rule. Although many connectionist models exist for capturing language development, few consider individual differences. In this article, we explore the use of populations of artificial neural networks (ANNs) that evolve according to behavioral genetics principles in order to create computational models capable of capturing the population variability exhibited by children in acquiring English past tense verbs. Literature in the field of behavioral genetics views variability in children's learning in terms of genetic and environmental influences. In our model, the effects of genetic influences are simulated through variations in parameters controlling computational properties of ANNs, and the effects of environmental influences are simulated via a filter applied to the training set. This filter alters the quality of information available to the artificial learning system and creates a unique subsample of the training set for each simulated individual. Our approach uses a population of twins to disentangle genetic and environmental influences on past tense performance and to capture the wide range of variability exhibited by children as they learn English past tenses. We use a novel technique to create the population of ANN twins based on the biological processes of meiosis and fertilization. This approach allows modeling of both individual differences and development (within the lifespan of an individual) in a single framework. Finally, our approach permits the application of selection on developmental performance on the quasi-regular task across generations. Setting individual differences within an evolutionary framework is an important and novel contribution of our work. We present an experimental evaluation of this model, focusing on individual differences in performance. The experiments led to several novel findings, including: divergence of population attributes during selection to favor regular verbs, irregular verbs, or both; evidence of canalization, analogous to Waddington's developmental epigenetic landscape, once selection starts targeting a particular aspect of the task domain; and the limiting effect on the power of selection in the face of stochastic selection (roulette wheel), sexual reproduction, and a variable learning environment for each individual. Most notably, the heritability of traits showed an inverse relationship to optimization. Selected traits show lower heritability as the genetic variation of the population reduces. The simulations demonstrate the viability of linking concepts such as heritability of individual differences, cognitive development, and selection over generations within a single computational framework.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3