The Alignment Template Approach to Statistical Machine Translation

Author:

Och Franz Josef1,Ney Hermann2

Affiliation:

1. Google, 1600 Amphitheatre Parkway, Mountain View, CA 94043..

2. RWTH Aachen, Lehrstuhl für Informatik VI, Computer Science Department, RWTH Aachen-University of Technology, Ahornstr. 55, 52056 Aachen, Germany..

Abstract

A phrase-based statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general many-to-many relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order from source to target language can be learned explicitly. The model is described using a log-linear modeling approach, which is a generalization of the often used source-channel approach. Thereby, the model is easier to extend than classical statistical machine translation systems. We describe in detail the process for learning phrasal translations, the feature functions used, and the search algorithm. The evaluation of this approach is performed on three different tasks. For the German-English speech Verbmobil task, we analyze the effect of various system components. On the French-English Canadian Hansards task, the alignment template system obtains significantly better results than a single-word-based translation model. In the Chinese-English 2002 National Institute of Standards and Technology (NIST) machine translation evaluation it yields statistically significantly better NIST scores than all competing research and commercial translation systems.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3