Affiliation:
1. Shannon Laboratory, AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932
Abstract
The paper defines weighted head transducers, finite-state machines that perform middle-out string transduction. These transducers are strictly more expressive than the special case of standard left-to-right finite-state transducers. Dependency transduction models are then defined as collections of weighted head transducers that are applied hierarchically. A dynamic programming search algorithm is described for finding the optimal transduction of an input string with respect to a dependency transduction model. A method for automatically training a dependency transduction model from a set of input-output example strings is presented. The method first searches for hierarchical alignments of the training examples guided by correlation statistics, and then constructs the transitions of head transducers that are consistent with these alignments. Experimental results are given for applying the training method to translation from English to Spanish and Japanese.
Subject
Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献