Role of Temporal Integration and Fluctuation Detection in the Highly Irregular Firing of a Leaky Integrator Neuron Model with Partial Reset

Author:

Bugmann Guido1,Christodoulou Chris2,Taylor John G.3

Affiliation:

1. School of Computing, University of Plymouth, Plymouth PL4 8AA, UK

2. Department of Electronic and Electrical Engineering, King's College London, Strand, London WC2R 2LS, UK

3. Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK Institut fur Medizin, Kfa-Juelich, Juelich, Germany

Abstract

Partial reset is a simple and powerful tool for controlling the irregularity of spike trains fired by a leaky integrator neuron model with random inputs. In particular, a single neuron model with a realistic membrane time constant of 10 ms can reproduce the highly irregular firing of cortical neurons reported by Softky and Koch (1993). In this article, the mechanisms by which partial reset affects the firing pattern are investigated. Itisshown theoretically that partial reset is equivalent to the use of a time-dependent threshold, similar to a technique proposed by Wilbur and Rinzel (1983) to produce high irregularity. This equivalent model allows establishing that temporal integration and fluctuation detection can coexist and cooperate to cause highly irregular firing. This study also reveals that reverse correlation curves cannot be used reliably to assess the causes of firing. For instance, they do not reveal temporal integration when it takes place. Further, the peak near time zero does not always indicate coincidence detection. An alternative qualitative method is proposed here for that later purpose. Finally, it is noted that as the reset becomes weaker, the firing pattern shows a progressive transition from regular firing, to random, to temporally clustered, and eventually to bursting firing. Concurrently the slope of the transfer function increases. Thus, simulations suggest a correlation between high gain and highly irregular firing.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3