Unveiling the role of local metabolic constraints on the structure and activity of spiking neural networks

Author:

Jaras IsmaelORCID,Orchard Marcos E.ORCID,Maldonado Pedro E.ORCID,Vergara Rodrigo C.ORCID

Abstract

AbstractUnderstanding the intricate interplay between neural dynamics and metabolic constraints is crucial for unraveling the mysteries of the brain. Despite the significance of this relationship, specific details concerning the impact of metabolism on neuronal dynamics and neural network architecture remain elusive, creating a notable gap in the existing literature. This study employs an energy-dependent neuron and plasticity model to analyze the role of local metabolic constraints in shaping both the dynamics and structure of Spiking Neural Networks (SNN). Specifically, an energy-dependent version of the leaky integrate-and-fire model is utilized, along with a three-factor learning rule that incorporates postsynaptic available energy as the third factor. These models allow for fine-tuning sensitivity in the presence of energy imbalances. Analytical expressions predicting the network’s activity and structure are derived, and a fixed-point analysis reveals the emergence of attractor states characterized by neuronal and synaptic sensitivity to energy imbalances. Analytical findings are validated through numerical simulations using an excitatory-inhibitory balanced network. Furthermore, these simulations enable the study of SNN activity and structure under conditions simulating metabolic impairment. In conclusion, by employing energy-dependent models with adjustable sensitivity to energy imbalances, our study advances the understanding of how metabolic constraints shape SNN dynamics and structure. Moreover, in light of compelling evidence linking neuronal metabolic impairment to neurodegenerative diseases, the incorporation of local metabolic constraints into the investigation of neuronal network structure and activity opens an intriguing avenue for inspiring the development of therapeutic interventions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3