Fast Exact Multiplication by the Hessian

Author:

Pearlmutter Barak A.1

Affiliation:

1. Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540 USA

Abstract

Just storing the Hessian H (the matrix of second derivatives δ2E/δwiδwj of the error E with respect to each pair of weights) of a large neural network is difficult. Since a common use of a large matrix like H is to compute its product with various vectors, we derive a technique that directly calculates Hv, where v is an arbitrary vector. To calculate Hv, we first define a differential operator Rv{f(w)} = (δ/δr)f(w + rv)|r=0, note that Rv{▽w} = Hv and Rv{w} = v, and then apply Rv{·} to the equations used to compute ▽w. The result is an exact and numerically stable procedure for computing Hv, which takes about as much computation, and is about as local, as a gradient evaluation. We then apply the technique to a one pass gradient calculation algorithm (backpropagation), a relaxation gradient calculation algorithm (recurrent backpropagation), and two stochastic gradient calculation algorithms (Boltzmann machines and weight perturbation). Finally, we show that this technique can be used at the heart of many iterative techniques for computing various properties of H, obviating any need to calculate the full Hessian.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Random Learning Leads to Faster Convergence in ‘Model‐Free’ ILC: With Application to MIMO Feedforward in Industrial Printing;International Journal of Adaptive Control and Signal Processing;2024-09-02

2. Fast maximum likelihood estimation for general hierarchical models;Journal of Applied Statistics;2024-07-24

3. Distributed adaptive greedy quasi-Newton methods with explicit non-asymptotic convergence bounds;Automatica;2024-07

4. IDE: A System for Iterative Mislabel Detection;Companion of the 2024 International Conference on Management of Data;2024-06-09

5. FUR-API: Dataset and Baselines Toward Realistic API Anomaly Detection;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3