Random Learning Leads to Faster Convergence in ‘Model‐Free’ ILC: With Application to MIMO Feedforward in Industrial Printing

Author:

Aarnoudse Leontine1ORCID,Oomen Tom12

Affiliation:

1. Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands

2. Delft Center for Systems and Control Delft University of Technology Delft The Netherlands

Abstract

ABSTRACTModel‐free iterative learning control (ILC) can lead to high performance by attenuating repeating disturbances completely, using dedicated experiments on the real system to replace the traditional model. The aim of this paper is to develop a fast data‐driven method for MIMO ILC that uses random learning in the form of efficient unbiased gradient estimates. This is achieved by developing a stochastic conjugate gradient algorithm, in which the search direction and optimal step size are generated using dedicated experiments. The approach is applied to MIMO automated feedforward tuning. Simulation and experimental results show that the method is superior to earlier stochastic and deterministic methods.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3