On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks

Author:

Luo Zhi-Quan1

Affiliation:

1. Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada

Abstract

We consider the problem of training a linear feedforward neural network by using a gradient descent-like LMS learning algorithm. The objective is to find a weight matrix for the network, by repeatedly presenting to it a finite set of examples, so that the sum of the squares of the errors is minimized. Kohonen showed that with a small but fixed learning rate (or stepsize) some subsequences of the weight matrices generated by the algorithm will converge to certain matrices close to the optimal weight matrix. In this paper, we show that, by dynamically decreasing the learning rate during each training cycle, the sequence of matrices generated by the algorithm will converge to the optimal weight matrix. We also show that for any given ∊ > 0 the LMS algorithm, with decreasing learning rates, will generate an ∊-optimal weight matrix (i.e., a matrix of distance at most ∊ away from the optimal matrix) after O(1/∊) training cycles. This is in contrast to Ω(1/∊log 1/∊) training cycles needed to generate an ∊-optimal weight matrix when the learning rate is kept fixed. We also give a general condition for the learning rates under which the LMS learning algorithm is guaranteed to converge to the optimal weight matrix.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of 2D and 3D Beam and Channel Tracking Using Adaptive Filtering Techniques;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2024-04-20

2. Global stability of first-order methods for coercive tame functions;Mathematical Programming;2023-10-06

3. Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era;Mathematics;2022-12-13

4. The Basic Principles of Machine Learning;Artificial Intelligence/Machine Learning in Nuclear Medicine and Hybrid Imaging;2022

5. Convergence of Online Gradient Method with Momentum for BP Neural Network;Journal of Physics: Conference Series;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3