Convergence of Online Gradient Method with Momentum for BP Neural Network

Author:

Pan Chengyan,Xie Gang

Abstract

Abstract The BP neural network, which uses the steepest descent method (gradient descent method) as the basic idea for learning, is often used to deal with approximation problems because of its strong nonlinear mapping ability. The gradient method with added momentum can improve the learning speed of BP neural network. We study the convergence of the online gradient method with momentum for two-layer BP neural network when the training samples are randomly arranged in each iteration. Choosing appropriate learning rates, and selecting momentum coefficients in an adaptive manner, we prove the weak and strong convergence theorems of the algorithm.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference21 articles.

1. Parameter Convergence and Learning Curves for Neural Networks;Fine;J. Neural Computation,1999

2. Diffusion Approximations for the Constant Learning Rate Backpropagation Algorithm and Resistance to Local Minima;Finnoff;J. Neural Computation,1994

3. Projected Gradient Methods for Nonnegative Matrix Factorization;Lin;J. Neural Computation,2014

4. Convergence of gradient method for Elman networks;Wu;J. Applied Mathematics and Mechanics, English Edition,2008

5. Convergence of approximated gradient method for Elman network;Xu;J. Neural Network World,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3