Diffusion Approximations for the Constant Learning Rate Backpropagation Algorithm and Resistance to Local Minima

Author:

Finnoff William1

Affiliation:

1. Siemens AG, Corporate Research and Development, Otto-Hahn-Ring 6, D-8000 Munich 83, Germany

Abstract

In this paper we discuss the asymptotic properties of the most commonly used variant of the backpropagation algorithm in which network weights are trained by means of a local gradient descent on examples drawn randomly from a fixed training set, and the learning rate η of the gradient updates is held constant (simple backpropagation). Using stochastic approximation results, we show that for η → 0 this training process approaches a batch training. Further, we show that for small η one can approximate simple backpropagation by the sum of a batch training process and a gaussian diffusion, which is the unique solution to a linear stochastic differential equation. Using this approximation we indicate the reasons why simple backpropagation is less likely to get stuck in local minima than the batch training process and demonstrate this empirically on a number of examples.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3