Affiliation:
1. College of Computer Science, Northeastern University, Boston, MA 02115 USA
Abstract
A novel variant of the familiar backpropagation-through-time approach to training recurrent networks is described. This algorithm is intended to be used on arbitrary recurrent networks that run continually without ever being reset to an initial state, and it is specifically designed for computationally efficient computer implementation. This algorithm can be viewed as a cross between epochwise backpropagation through time, which is not appropriate for continually running networks, and the widely used on-line gradient approximation technique of truncated backpropagation through time.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
321 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献