Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms

Author:

Nerrand O.1,Roussel-Ragot P.1,Personnaz L.1,Dreyfus G.1,Marcos S.2

Affiliation:

1. Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10, rue Vauquelin, 75005 Paris, France

2. Laboratoire des Signaux et Systèmes, Ecole Supérieure d'Electricité, Plateau de Moulon, 91192 Gif sur Yvette, France

Abstract

The paper proposes a general framework that encompasses the training of neural networks and the adaptation of filters. We show that neural networks can be considered as general nonlinear filters that can be trained adaptively, that is, that can undergo continual training with a possibly infinite number of time-ordered examples. We introduce the canonical form of a neural network. This canonical form permits a unified presentation of network architectures and of gradient-based training algorithms for both feedforward networks (transversal filters) and feedback networks (recursive filters). We show that several algorithms used classically in linear adaptive filtering, and some algorithms suggested by other authors for training neural networks, are special cases in a general classification of training algorithms for feedback networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3