A Hydrological Digital Twin by Artificial Neural Networks for Flood Simulation in Gardon de Sainte-Croix Basin, France

Author:

Alperen Cagri Inan,Artigue Guillaume,Kurtulus Bedri,Pistre Séverin,Johannet Anne

Abstract

Abstract Understanding, simulating and forecasting dynamic and nonlinear natural phenomena are necessary in a climate change context and increased sensitivity of societies to natural hazards. Nevertheless, even though powerful computing tools and algorithms have been widely used to understand and to predict natural disasters, these tasks are still challenging for scientists. Indeed, one of the most dangerous natural phenomena, flash floods keep being a challenge for modelers, despite (i) the existence of some effective hydrological simulating tools, and (ii) the increasing availability of descriptive data, especially rainfall and discharge. In particular, on one hand, environmental data contain an important amount of noise leading to additional uncertainties and on the other hand, physically based models strongly depend on assumptions about the behavior of the basin, that is often more variable in space and time than what is modelled. With the objective of applying data assimilation to improve forecasting properties of the physical model, it is necessary to dispose of a differentiable model. In order to mitigate this issue, a hybrid physical and statistical approach is proposed in this study. It was shown in previous works that deep neural networks are able to identify any differentiable function by using the universal approximation property. Deep neural networks are also good candidates to perform the digital twin of the physical model. Thus, three different neural networks models were designed in this study, and each one is implementing a different type of non-linear filter model, in order to achieve the dynamic character of the catchment area (recurrent, feedforward and static models). The study area is located in the Gardon de Sainte-Croix basin (France), which is known for its sudden and violent floods that caused casualties and a lot of damage. The chosen physical-based model is semi distributed conceptual hydrological SOCONT model, RS Minerve (https://www.crealp.ch/down/rsm/install2/archives.html). Neural networks design was done by using a rigorous complexity selection and regularization methods to promote a good generalization. The three models obtained were thus compared. The feed forward model gave the best results on tests events (Nash score=0.98−0.99), making full use of the inputs with previous observed discharges whereas the recurrent model gave interesting results representing satisfactorily the dynamics of the physical model (Nash score=0.8−0.97). The static model, whose inputs contain only rainfall, is less efficient, showing the importance of dynamics in that kind of system (Nash score=0.62−0.84). Beyond data assimilation, these results open paths of inquiry for building digital twins of physical model, allowing also a great reduction of computing time.

Publisher

IOP Publishing

Subject

General Engineering

Reference22 articles.

1. Global Trends in Water-Related Disasters: an insight for policymakers;Adikari;The United Nations World Water Assessment Programme Side Publications Series,2009

2. Digital twin : manufacturing excellence through virtual factory replication;Grieves,2014

3. Neural networks for karst groundwater management: case of the Lez spring (Southern France);Kong-A-Siou;Environ. Earth Sci.,2015

4. Karst-aquifer operational turbidity forecasting by neural netwroks and the role of complexity in designing the model: a case study of the Yport basin in Normandy (France);Savary;Hydrogeol. J.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3