Learning in the Recurrent Random Neural Network

Author:

Gelenbe Erol1

Affiliation:

1. Ecole des Hautes Etudes en Informatique, Université René Descartes (Paris V), 45 rue des Saints-Pères, 75006 Paris, France

Abstract

The capacity to learn from examples is one of the most desirable features of neural network models. We present a learning algorithm for the recurrent random network model (Gelenbe 1989, 1990) using gradient descent of a quadratic error function. The analytical properties of the model lead to a "backpropagation" type algorithm that requires the solution of a system of n linear and n nonlinear equations each time the n-neuron network "learns" a new input-output pair.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 254 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. System-wide vulnerability of multi-component software;Computers & Industrial Engineering;2024-10

2. Adapting Random Simple Recurrent Network for Online Forecasting Problems;2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS);2024-05-23

3. Hydrological time series prediction based on IWOA-ALSTM;Scientific Reports;2024-04-05

4. Online Self-Supervised Deep Learning for Intrusion Detection Systems;IEEE Transactions on Information Forensics and Security;2024

5. Water Level Prediction Model of the Upper Yangtze River by Cloud Computing and Automl;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3