On human consciousness: A mathematical perspective

Author:

Grindrod Peter1

Affiliation:

1. Mathematical Institute, University of Oxford, United Kingdom

Abstract

We consider the implications of the mathematical modeling and analysis of large modular neuron-to-neuron dynamical networks. We explain how the dynamical behavior of relatively small-scale strongly connected networks leads naturally to nonbinary information processing and thus to multiple hypothesis decision-making, even at the very lowest level of the brain’s architecture. In turn we build on these ideas to address some aspects of the hard problem of consciousness. These include how feelings might arise within an architecture with a foundational decision-making and classification layer of unit processors. We discuss how a proposed “dual hierarchy model,” made up from both externally perceived, physical elements of increasing complexity, and internally experienced, mental elements (which we argue are equivalent to feelings), may support aspects of a learning and evolving consciousness. We introduce the idea that a human brain ought to be able to reconjure subjective mental feelings at will, and thus these feelings cannot depend on internal chatter or internal instability-driven activity (patterns). An immediate consequence of this model, grounded in dynamical systems and nonbinary information processing, is that finite human brains must always be learning and forgetting and that any possible subjective internal feeling that might be fully idealized with a countable infinity of facets could never be learned completely a priori by zombies or automata. It may be experienced more and more fully by an evolving human brain (yet never in totality, not even in a lifetime). We argue that, within our model, the mental elements and thus internal modes (feelings) play a role akin to latent variables in processing and decision-making, and thus confer an evolutionary “fast-thinking” advantage.

Funder

Engineering and Physical Sciences Research Council

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3