Minimum spanning tree analysis of brain networks: A systematic review of network size effects, sensitivity for neuropsychiatric pathology, and disorder specificity

Author:

Blomsma N.1,de Rooy B.1,Gerritse F.1,van der Spek R.1,Tewarie P.2,Hillebrand A.2,Otte W. M.3,Stam C. J.2,van Dellen E.14ORCID

Affiliation:

1. University Medical Center Utrecht, Department of Psychiatry, Brain Center, Utrecht, the Netherlands

2. Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG center, Amsterdam Neuroscience, Amsterdam The Netherlands

3. University Medical Center Utrecht, Department of Child Neurology, Brain Center, Utrecht, the Netherlands

4. University Medical Center Utrecht, Department of Intensive Care Medicine, Brain Center, Utrecht, the Netherlands

Abstract

Abstract Brain network characteristics’ potential to serve as a neurological and psychiatric pathology biomarker has been hampered by the so-called thresholding problem. The minimum spanning tree (MST) is increasingly applied to overcome this problem. It is yet unknown whether this approach leads to more consistent findings across studies and converging outcomes of either disease-specific biomarkers or transdiagnostic effects. We performed a systematic review on MST analysis in neurophysiological and neuroimaging studies (N = 43) to study consistency of MST metrics between different network sizes and assessed disease specificity and transdiagnostic sensitivity of MST metrics for neurological and psychiatric conditions. Analysis of data from control groups (12 studies) showed that MST leaf fraction but not diameter decreased with increasing network size. Studies showed a broad range in metric values, suggesting that specific processing pipelines affect MST topology. Contradicting findings remain in the inconclusive literature of MST brain network studies, but some trends were seen: (1) a more linelike organization characterizes neurodegenerative disorders across pathologies, and is associated with symptom severity and disease progression; (2) neurophysiological studies in epilepsy show frequency band specific MST alterations that normalize after successful treatment; and (3) less efficient MST topology in alpha band is found across disorders associated with attention impairments.

Funder

ZonMw

UMC Utrecht Clinical Research Talent Fellowship

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3