Minimum spanning tree analysis for epilepsy magnetoencephalography (MEG) data

Author:

Shin Sunhan1ORCID,Chung Chun Kee2ORCID,Kim Jaehee1ORCID

Affiliation:

1. Department of Statistics, Duksung Women’s University, Seoul 01369, Republic of Korea

2. Department of Brain and Cognitive Sciences, Seoul National University, Seoul 03080, Republic of Korea

Abstract

Aim: Recently, brain network research is actively conducted through the application of graph theory. However, comparison between brain networks is subject to bias issues due to topological characteristics and heterogeneity across subjects. The minimum spanning tree (MST) is a method that is increasingly applied to overcome the thresholding problem. In this study, the aim is to use the MST analysis in comparing epilepsy patients and controls to find the differences between groups. Methods: The MST combines entities for epileptic magnetoencephalography (MEG) data. The MST was applied and compared to 21 left surgery (LT) and 21 right surgery (RT) patients with epilepsy and good postoperative prognosis and a healthy control (HC) group. MST metrics such as betweenness centrality, eccentricity, diameter, and leaf fraction, are computed and compared to describe the integration and efficiency of the network. The MST analysis is applied to each subject, and then the integrated MST is obtained using the distance concept. This approach can be advantageous when comparing the topological structure of patients to controls with the same number of nodes. Results: The HC group showed less topological change and more network efficiency than the epilepsy LT and RT groups. In addition, the posterior cingulate gyrus was found as a hub node only in the patient group in individual and integrated subject data analysis. Conclusions: This study suggests propose that the hippocampus borrows from the default network when one side fails, compensating for the weakened function.

Funder

National Research Foundation of Korea

Publisher

Open Exploration Publishing

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3