Parallel processing relies on a distributed, low-dimensional cortico-cerebellar architecture

Author:

Müller Eli J.12,Palesi Fulvia34,Hou Kevin Y.12,Tan Joshua12,Close Thomas567,Gandini Wheeler-Kingschott Claudia A. M.348,D’Angelo Egidio34,Calamante Fernando268,Shine James M.12ORCID

Affiliation:

1. Complex Systems Research Group, The University of Sydney, Sydney, NSW, Australia

2. Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia

3. Brain Connectivity Research Center, IRCCS Mondino Foundation, Pavia, Italy

4. Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

5. National Imaging Facility, Sydney, NSW, Australia

6. School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia

7. Sydney Imaging, The University of Sydney, Sydney, NSW, Australia

8. NMR Research Unit, Queen Square Multiple Sclerosis Centre, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, UCL, London, UK

Abstract

Abstract A characteristic feature of human cognition is our ability to ‘multi-task’—performing two or more tasks in parallel—particularly when one task is well learned. How the brain supports this capacity remains poorly understood. Most past studies have focussed on identifying the areas of the brain—typically the dorsolateral prefrontal cortex—that are required to navigate information-processing bottlenecks. In contrast, we take a systems neuroscience approach to test the hypothesis that the capacity to conduct effective parallel processing relies on a distributed architecture that interconnects the cerebral cortex with the cerebellum. The latter structure contains over half of the neurons in the adult human brain and is well suited to support the fast, effective, dynamic sequences required to perform tasks relatively automatically. By delegating stereotyped within-task computations to the cerebellum, the cerebral cortex can be freed up to focus on the more challenging aspects of performing the tasks in parallel. To test this hypothesis, we analysed task-based fMRI data from 50 participants who performed a task in which they either balanced an avatar on a screen (balance), performed serial-7 subtractions (calculation) or performed both in parallel (dual task). Using a set of approaches that include dimensionality reduction, structure-function coupling, and time-varying functional connectivity, we provide robust evidence in support of our hypothesis. We conclude that distributed interactions between the cerebral cortex and cerebellum are crucially involved in parallel processing in the human brain.

Funder

National Health and Medical Research Council

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3