The engagement of the cerebellum and basal ganglia enhances expertise in a sensorimotor adaptation task

Author:

Tan Joshua B.1,Müller Eli12,Zahorodnii Andrii3,Shine James M.12

Affiliation:

1. Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia

2. Centre for Complex Systems, School of Physics, University of Sydney, Sydney, Australia

3. Massachusetts Institute of Technology, Boston, MA, United States

Abstract

Abstract The ability to adapt to changes in the environment is essential for skilled performance, especially in competitive sports and events, where experts consistently perform at the highest level, rapidly adapting to unpredictable conditions. Current studies have identified cortical-cortical interactions between the premotor and primary motor cortex during expert performance; however, while these interactions are important for planning and execution, our understanding of the mechanisms underlying learning, feedback, and adaptation remains unclear. Subcortical structures, such as the cerebellum, have dense connections with the cerebral cortex through which they provide precise topological constraints that could putatively play a crucial role in fast, accurate task execution. To test this hypothesis, we tracked cortical, subcortical, and cerebellar BOLD activity during a visuomotor rotation task in which participants executed a visual cue-driven, ballistic motor task across three conditions: at baseline; following a 45° clockwise motor rotational perturbation; and then within a follow-up (washout) condition. We observed increased recruitment of primary visual, basal ganglia, and cerebellar regions that robustly covaried with fast, accurate performance across all conditions (baseline, rotation, and washout). Tracking individualised performance across participants, we observed three distinct groups: experts (consistently fast and accurate), adapters (initially poor with improvement to expert-level), and non-adapters (initially good but ultimately poor performance). The experts and adapter groups demonstrated performances that were robust to changes in conditions and were more variable in their neural signatures between trials, whereas the performance of non-adapters decreased with changes in conditions and were characterised by less variable neural signatures. These results aligned with the tenets of the differential learning theory. To establish the validity of our interpretation of these whole-brain signatures and behavioural patterns, the neuroimaging results were reproduced by training recurrent neural networks representing each group and analysing their resultant activity patterns. Together, these results provide evidence for cerebellar and basal ganglia contributions to expertise in adaptation and suggest a possible connection between variable brain patterns and robust performance.

Publisher

MIT Press

Reference111 articles.

1. A theory of cerebellar function;Albus;Mathematical Biosciences,1971

2. Neural correlates associated with intermanual transfer of sensorimotor adaptation;Anguera;Brain Research,2007

3. Neural excursions from manifold structure explain patterns of learning during human sensorimotor adaptation;Areshenkoff;eLife,2022

4. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex;Arslan;NeuroImage,2018

5. Effectiveness of the finite impulse response model in content-based fMRI image retrieval;Bai,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3