Kernel Fisher Discriminants for Outlier Detection

Author:

Roth Volker1

Affiliation:

1. ETH Zurich, Institute of Computational Science, CH-8092 Zurich, Switzerland,

Abstract

The problem of detecting atypical objects or outliers is one of the classical topics in (robust) statistics. Recently, it has been proposed to address this problem by means of one-class SVM classifiers. The method presented in this letter bridges the gap between kernelized one-class classification and gaussian density estimation in the induced feature space. Having established the exact relation between the two concepts, it is now possible to identify atypical objects by quantifying their deviations from the gaussian model. This model-based formalization of outliers overcomes the main conceptual shortcoming of most one-class approaches, which, in a strict sense, are unable to detect outliers, since the expected fraction of outliers has to be specified in advance. In order to overcome the inherent model selection problem of unsupervised kernel methods, a cross-validated likelihood criterion for selecting all free model parameters is applied. Experiments for detecting atypical objects in image databases effectively demonstrate the applicability of the proposed method in real-world scenarios.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3