Anomaly detection in time series

Author:

Schmidl Sebastian1,Wenig Phillip1,Papenbrock Thorsten2

Affiliation:

1. University of Potsdam, Potsdam, Germany

2. Philipps University of Marburg, Marburg, Germany

Abstract

Detecting anomalous subsequences in time series data is an important task in areas ranging from manufacturing processes over finance applications to health care monitoring. An anomaly can indicate important events, such as production faults, delivery bottlenecks, system defects, or heart flicker, and is therefore of central interest. Because time series are often large and exhibit complex patterns, data scientists have developed various specialized algorithms for the automatic detection of such anomalous patterns. The number and variety of anomaly detection algorithms has grown significantly in the past and, because many of these solutions have been developed independently and by different research communities, there is no comprehensive study that systematically evaluates and compares the different approaches. For this reason, choosing the best detection technique for a given anomaly detection task is a difficult challenge. This comprehensive, scientific study carefully evaluates most state-of-the-art anomaly detection algorithms. We collected and re-implemented 71 anomaly detection algorithms from different domains and evaluated them on 976 time series datasets. The algorithms have been selected from different algorithm families and detection approaches to represent the entire spectrum of anomaly detection techniques. In the paper, we provide a concise overview of the techniques and their commonalities; we evaluate their individual strengths and weaknesses and, thereby, consider factors, such as effectiveness, efficiency, and robustness. Our experimental results should ease the algorithm selection problem and open up new research directions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference165 articles.

1. Adam Aboode . 2018. Anomaly Detection in Time Series Data Based on Holt-Winters Method. Master Thesis . KTH Royal Institute of Technology . Adam Aboode. 2018. Anomaly Detection in Time Series Data Based on Holt-Winters Method. Master Thesis. KTH Royal Institute of Technology.

2. Outlier Analysis

3. Unsupervised real-time anomaly detection for streaming data

4. A Review of Automated Methods for Detection of Myocardial Ischemia and Infarction Using Electrocardiogram and Electronic Health Records

5. A statistical methodology for the design of condition indicators

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3