Support Vector Machines for Dyadic Data

Author:

Hochreiter Sepp,Obermayer Klaus1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany

Abstract

We describe a new technique for the analysis of dyadic data, where two sets of objects (row and column objects) are characterized by a matrix of numerical values that describe their mutual relationships. The new technique, called potential support vector machine (P-SVM), is a large-margin method for the construction of classifiers and regression functions for the column objects. Contrary to standard support vector machine approaches, the P-SVM minimizes a scale-invariant capacity measure and requires a new set of constraints. As a result, the P-SVM method leads to a usually sparse expansion of the classification and regression functions in terms of the row rather than the column objects and can handle data and kernel matrices that are neither positive definite nor square. We then describe two complementary regularization schemes. The first scheme improves generalization performance for classification and regression tasks; the second scheme leads to the selection of a small, informative set of row support objects and can be applied to feature selection. Benchmarks for classification, regression, and feature selection tasks are performed with toy data as well as with several real-world data sets. The results show that the new method is at least competitive with but often performs better than the benchmarked standard methods for standard vectorial as well as true dyadic data sets. In addition, a theoretical justification is provided for the new approach.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3