Machine learning-based prediction of fainting during blood donations using donor properties and weather data as features

Author:

Suessner Susanne,Niklas Norbert,Bodenhofer Ulrich,Meier Jens

Abstract

Abstract Background and objectives Fainting is a well-known side effect of blood donation. Such adverse experiences can diminish the return rate for further blood donations. Identifying factors associated with fainting could help prevent adverse incidents during blood donation. Materials and methods Data of 85,040 blood donations from whole blood and apheresis donors within four consecutive years were included in this retrospective study. Seven different machine learning models (random forests, artificial neural networks, XGradient Boosting, AdaBoost, logistic regression, K nearest neighbors, and support vector machines) for predicting fainting during blood donation were established. The used features derived from the data obtained from the questionnaire every donor has to fill in before the donation and weather data of the day of the donation. Results One thousand seven hundred fifteen fainting reactions were observed in 228 846 blood donations from 88,003 donors over a study period of 48 months. Similar values for all machine learning algorithms investigated for NPV, PPV, AUC, and F1-score were obtained. In general, NPV was above 0.996, whereas PPV was below 0.03. AUC and F1-score were close to 0.9 for all models. Essential features predicting fainting during blood donation were systolic and diastolic blood pressure and ambient temperature, humidity, and barometric pressure. Conclusion Machine-learning algorithms can establish prediction models of fainting in blood donors. These new tools can reduce adverse reactions during blood donation and improve donor safety and minimize negative associations relating to blood donation.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3